Ncl Synchronously Regulates Na+, K+, and Cl− in Soybean and Greatly Increases the Grain Yield in Saline Field Conditions

Published Date
January 08, 2016
Type
Journal Article
Ncl Synchronously Regulates Na+, K+, and Cl− in Soybean and Greatly Increases the Grain Yield in Saline Field Conditions
Authors:
Do Duc Tuyen
Huatao Chen, Huatao Chen, Vu Thi Thu Hien, Vu Thi Thu Hien, Aladdin Hamwieh, Aladdin Hamwieh, Tetsuya Yamada, Tadashi Sato, Yongliang Yan, Hua Cong, Mariko Shono, Kazuhiro Suenaga, D. H. Xu

Salt stress inhibits soybean growth and reduces gain yield. Genetic improvement of salt tolerance is essential for sustainable soybean production in saline areas. In this study, we isolated a gene (Ncl) that could synchronously regulate the transport and accumulation of Na+, K+, and Cl-from a Brazilian soybean cultivar FT-Abyara using map-based cloning strategy. Higher expression of the salt tolerance gene Ncl in the root resulted in lower accumulations of Na+, K+, and Cl-in the shoot under salt stress. Transfer of Ncl with the Agrobacterium-mediated transformation method into a soybean cultivar Kariyutaka significantly enhanced its salt tolerance. Introgression of the tolerance allele into soybean cultivar Jackson, using DNA marker-assisted selection (MAS), produced an improved salt tolerance line. Ncl could increase soybean grain yield by 3.6-5.5 times in saline field conditions. Using Ncl in soybean breeding through gene transfer or MAS would contribute to sustainable soybean production in salineprone areas.

Citation:
Do Duc Tuyen, Huatao Chen, Vu Thi Thu Hien, Aladdin Hamwieh, Tetsuya Yamada, Tadashi Sato, Yongliang Yan, Hua Cong, Mariko Shono, Kazuhiro Suenaga, D. H. Xu. (8/1/2016). Ncl Synchronously Regulates Na+, K+, and Cl− in Soybean and Greatly Increases the Grain Yield in Saline Field Conditions. Scientific Reports, 6.
Keywords:
soybean
salt
yield
field conditions